Temperature.cpp.sketch 6.99 KB
Newer Older
João Lino's avatar
João Lino committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
/*
  Temperature.cpp - Library for measuring temperature with a Temperature.
  Created by João Lino, December 22, 2015.
  Released into the public domain.
*/
#include "Arduino.h"
#include "Temperature.h"

Temperature::Temperature(char *name,
                    int OutputPin_SensorPower, 
                    int InputPin_TemperatureReading, 
					int TimeBetweenReadings) {
	
    _name                              =   name;
    _OutputPin_SensorPower             =   OutputPin_SensorPower;
    _InputPin_TemperatureReading       =   InputPin_TemperatureReading;
	_TimeBetweenReadings               =   TimeBetweenReadings;
	_ADCVmax                           =   ADCVmax;
	
	_temperatureAverage	               =   24.0;
	_measuredTemperature               =   24.0;
	_lastTemperatureRead               =   0;
	_VoutAnalogSample                  =   -1;
	_VoutPreviousAnalogSample          =   -1.0;
	_temperatureMeasurementsMarker     =   0;
    _rTemperatureMeasurementsMarker    =   0;
    _rLineMeasurementsMarker           =   0;
    _measuredTemperatureDeviation      =   0.0;
    _sampleDeviation                   =   0.0;

    analogReference(INTERNAL1V1);									// EXTERNAL && INTERNAL2V56 && INTERNAL1V1
    pinMode(_OutputPin_SensorPower, OUTPUT);            // setup temperature sensor input pin
    digitalWrite(_OutputPin_SensorPower, LOW);      // initialize sensor on
}

void Temperature::safeHardwarePowerOff() {
  digitalWrite(_OutputPin_SensorPower, LOW);        // Turn temperature sensor OFF for safety
  digitalWrite(_OutputPin_ThirdLinePower, LOW);        // Turn temperature sensor OFF for safety
}

void Temperature::measure1(boolean ln, boolean rline) {
  if(millis() - _lastTemperatureRead >= _TimeBetweenReadings) {                           //time to measure temperature
    
    /** measure Vout analog sample */
    digitalWrite(_OutputPin_SensorPower, HIGH);      // initialize sensor on
    digitalWrite(_OutputPin_ThirdLinePower, HIGH);      // initialize sensor on
    delay(10);
    _VoutAnalogSample = analogRead(_InputPin_TemperatureReading) + _sampleDeviation;     // Get a reading
    _VoutRAnalogSample = analogRead(_InputPin_ThirdLineReading) + _sampleDeviation;     // Get a reading
    digitalWrite(_OutputPin_SensorPower, LOW);      // initialize sensor on
    digitalWrite(_OutputPin_ThirdLinePower, LOW);      // initialize sensor on

    _lastTemperatureRead            = millis();                                             // Mark time of temperature reading

    _rTemperatureMeasurementsMarker++;                                                                                                                                                   // Position reading buffer marker at the last updated position
    if(_rTemperatureMeasurementsMarker >= TEMPERATURE_AVERAGE_VALUE_I) _rTemperatureMeasurementsMarker = 0;           // Check that it has not gone out of the buffer range
    _rTemperatureMeasurements[_rTemperatureMeasurementsMarker] = _VoutAnalogSample;
    float Vout = GetMedian(_rTemperatureMeasurements) * _ADCVmax / CONSTANT_ADC_STEP_COUNT;
    float Rx = _R1 / ( _Vs / Vout - 1.0);

    if(rline) {
        _rLineMeasurementsMarker++;                                                                                                                                                   // Position reading buffer marker at the last updated position
        if(_rLineMeasurementsMarker >= TEMPERATURE_AVERAGE_VALUE_I) _rLineMeasurementsMarker = 0;           // Check that it has not gone out of the buffer range
        _rLineMeasurements[_rLineMeasurementsMarker] = _VoutRAnalogSample;

        /** Calculate temperature value */
        float VoutR = GetMedian(_rLineMeasurements) * _ADCVmax / CONSTANT_ADC_STEP_COUNT;
        float Rline = _R2 / ( _Vs / VoutR - 1.0);
        _measuredTemperature = 1.08271 * pow(10.0, -13.0) * (3.12508 * pow(10.0, 16.0) - 5.65566 * pow(10.0, 6.0) * sqrt(3.51501 * pow(10.0, 19.0) - 4.61805 * pow(10.0, 16.0) * (Rx - Rline)));
    }
    else {
        /** Calculate temperature value */
        _measuredTemperature = 1.08271 * pow(10.0, -13.0) * (3.12508 * pow(10.0, 16.0) - 5.65566 * pow(10.0, 6.0) * sqrt(3.51501 * pow(10.0, 19.0) - 4.61805 * pow(10.0, 16.0) * Rx));
    }
    

    //xFilterNoise(_temperatureMeasurementsMarker);
/*
    Serial.print("Temperature : [");
    Serial.print(_name);
    Serial.print("]\tVoutSample: [");
    Serial.print(_VoutAnalogSample);


//    Serial.print("]\tVout[");
//    Serial.print(Vout,6);
//    Serial.print("]\tRx[");
//    Serial.print(Rx,6);

    
    Serial.print("]\tTNow[");
    Serial.print(measuredTemperatureNow,6);
    Serial.print("]\tTCalc[");
    Serial.print(_measuredTemperature,6);
    Serial.println("] ");
*/


    //Serial.print("Temperature : [");
    #ifdef DEBUG
    Serial.print(_name);
    Serial.print(",");
    Serial.print(_VoutAnalogSample);
    Serial.print(",");
    //Serial.print(_VoutRAnalogSample);
    //Serial.print(",");

    /*Serial.print(test);
    Serial.print(",");
    Serial.print(Rtest);
    Serial.print(",");*/
    /*Serial.print(Vout,6);
    Serial.print(",");
    Serial.print(Rx,6);

    
    Serial.print(",");
    Serial.print(measuredTemperatureNow,6);
    Serial.print(",");
    Serial.print(_measuredTemperature,6);
    Serial.print(",");*/
    if(ln) Serial.println("");
    #endif
  }
}

float Temperature::GetMedian(int array[]){
    int sorted[TEMPERATURE_AVERAGE_VALUE_I];
    float value = 0.0;

    for(int x = 0; x < TEMPERATURE_AVERAGE_VALUE_I; x++) {
        sorted[x] = array[x];
    }

     //ARRANGE VALUES
    for(int x = 0; x < TEMPERATURE_AVERAGE_VALUE_I; x++){
        for(int y = 0; y < TEMPERATURE_AVERAGE_VALUE_I - 1; y++){
            if(sorted[y]>sorted[y+1]){
                int temp = sorted[y+1];
                sorted[y+1] = sorted[y];
                sorted[y] = temp;
            }
        }
    }

    //CALCULATE THE MEDIAN (middle number)
    if(TEMPERATURE_AVERAGE_VALUE_I % 2 != 0){// is the # of elements odd?
        int temp = ((TEMPERATURE_AVERAGE_VALUE_I+1)/2)-1;
        value = (float) sorted[temp];
    }
    else{// then it's even! :)
        value = ((float) ( sorted[(TEMPERATURE_AVERAGE_VALUE_I/2)-1] + sorted[TEMPERATURE_AVERAGE_VALUE_I/2] )) / 2.0;
    }

    return value;
}

float Temperature::getCurrentTemperature() {
    return _measuredTemperature + _measuredTemperatureDeviation;
}

float Temperature::getMeasuredTemperatureDeviation() {
    return _measuredTemperatureDeviation;
}
float Temperature::setMeasuredTemperatureDeviation( float measuredTemperatureDeviation) {
    if( _measuredTemperatureDeviation != measuredTemperatureDeviation ) {
        _measuredTemperatureDeviation = measuredTemperatureDeviation;

        for( int i = 0; i < TEMPERATURE_AVERAGE_VALUE_I; i++ ) {
            _temperatureMeasurements[i] = _temperatureMeasurements[i] + ( _measuredTemperatureDeviation * -1 );
        }
    }
    
    return _measuredTemperatureDeviation;
}

float Temperature::setSampleDeviation( float sampleDeviation) {
    _sampleDeviation = sampleDeviation;

    return _sampleDeviation;
}