Commit 90cd14af authored by João Lino's avatar João Lino

some identation.

parent 4fab6c8e
......@@ -4,59 +4,59 @@
// ######################### SETTINGS #########################
// ++++++++++++++++++++++++ Heating Element Relay ++++++++++++++++++++++++
#define HEATING_ELEMENT_DEFAULT_WINDOW_SIZE 1000
#define HEATING_ELEMENT_OUTPUT_PIN 24
#define HEATING_ELEMENT_MAX_HEAT_PWM_INTEGER 5
#define HEATING_ELEMENT_MAX_HEAT_PWM_FLOAT 5.0
#define HEATING_ELEMENT_MAX_WATTAGE 3000.0 // Minimum = 2000.0
#define HEATING_ELEMENT_AC_FREQUENCY_HZ 50.0
#define HEATING_ELEMENT_DEFAULT_WINDOW_SIZE 1000
#define HEATING_ELEMENT_OUTPUT_PIN 24
#define HEATING_ELEMENT_MAX_HEAT_PWM_INTEGER 5
#define HEATING_ELEMENT_MAX_HEAT_PWM_FLOAT 5.0
#define HEATING_ELEMENT_MAX_WATTAGE 3000.0 // Minimum = 2000.0
#define HEATING_ELEMENT_AC_FREQUENCY_HZ 50.0
// ++++++++++++++++++++++++ Temperature ++++++++++++++++++++++++
#define PT100_BASE_INPUT_PIN A4
#define PT100_BASE_OUTPUT_PIN 30
#define PT100_BASE_TIME_BETWEEN_READINGS 100
#define PT100_UP_INPUT_PIN A5
#define PT100_UP_OUTPUT_PIN 31
#define PT100_UP_TIME_BETWEEN_READINGS 100
#define PT100_DOWN_INPUT_PIN A6
#define PT100_DOWN_OUTPUT_PIN 32
#define PT100_DOWN_TIME_BETWEEN_READINGS 100
#define PT100_BASE_DEFAULT_ADC_VMAX 1.081
#define PT100_BASE_DEFAULT_VS 4.87
#define PT100_BASE_DEFAULT_R1_RESISTENCE 606.0
#define PT100_BASE_DEFAULT_LINE_RESISTENCE 0.7
#define PT100_BASE_DEFAULT_OPERATION_RESISTENCE 0.0
#define PT100_UP_DEFAULT_ADC_VMAX 1.081
#define PT100_UP_DEFAULT_VS 4.87
#define PT100_UP_DEFAULT_R1_RESISTENCE 606.0
#define PT100_UP_DEFAULT_LINE_RESISTENCE 0.7
#define PT100_UP_DEFAULT_OPERATION_RESISTENCE 0.0
#define PT100_DOWN_DEFAULT_ADC_VMAX 1.081
#define PT100_DOWN_DEFAULT_VS 4.87
#define PT100_DOWN_DEFAULT_R1_RESISTENCE 606.0
#define PT100_DOWN_DEFAULT_LINE_RESISTENCE 0.7
#define PT100_DOWN_DEFAULT_OPERATION_RESISTENCE 0.0
#define PT100_BASE_INPUT_PIN A4
#define PT100_BASE_OUTPUT_PIN 30
#define PT100_BASE_TIME_BETWEEN_READINGS 100
#define PT100_UP_INPUT_PIN A5
#define PT100_UP_OUTPUT_PIN 31
#define PT100_UP_TIME_BETWEEN_READINGS 100
#define PT100_DOWN_INPUT_PIN A6
#define PT100_DOWN_OUTPUT_PIN 32
#define PT100_DOWN_TIME_BETWEEN_READINGS 100
#define PT100_BASE_DEFAULT_ADC_VMAX 1.081
#define PT100_BASE_DEFAULT_VS 4.87
#define PT100_BASE_DEFAULT_R1_RESISTENCE 606.0
#define PT100_BASE_DEFAULT_LINE_RESISTENCE 0.7
#define PT100_BASE_DEFAULT_OPERATION_RESISTENCE 0.0
#define PT100_UP_DEFAULT_ADC_VMAX 1.081
#define PT100_UP_DEFAULT_VS 4.87
#define PT100_UP_DEFAULT_R1_RESISTENCE 606.0
#define PT100_UP_DEFAULT_LINE_RESISTENCE 0.7
#define PT100_UP_DEFAULT_OPERATION_RESISTENCE 0.0
#define PT100_DOWN_DEFAULT_ADC_VMAX 1.081
#define PT100_DOWN_DEFAULT_VS 4.87
#define PT100_DOWN_DEFAULT_R1_RESISTENCE 606.0
#define PT100_DOWN_DEFAULT_LINE_RESISTENCE 0.7
#define PT100_DOWN_DEFAULT_OPERATION_RESISTENCE 0.0
// ++++++++++++++++++++++++ Mixer ++++++++++++++++++++++++
//#define MIXER_PIN 12
//#define MIXER_MAX_POSITION 255
//#define MIXER_PIN 12
//#define MIXER_MAX_POSITION 255
// ++++++++++++++++++++++++ Rotary Encoder ++++++++++++++++++++++++
#define ROTARY_ENCODER_INTERRUPT_NUMBER 1 // On Mega2560 boards, interrupt 1 is on pin 3
#define ROTARY_ENCODER_CLK_PIN 3 // Used for generating interrupts using CLK signal
#define ROTARY_ENCODER_DT_PIN 22 // Used for reading DT signal
#define ROTARY_ENCODER_SW_PIN 23 // Used for the push button switch
#define ROTARY_ENCODER_DEBOUNCE_TIME 10 // Number of miliseconds to ignore new signals a signal is received
#define ROTARY_ENCODER_INTERRUPT_NUMBER 1 // On Mega2560 boards, interrupt 1 is on pin 3
#define ROTARY_ENCODER_CLK_PIN 3 // Used for generating interrupts using CLK signal
#define ROTARY_ENCODER_DT_PIN 22 // Used for reading DT signal
#define ROTARY_ENCODER_SW_PIN 23 // Used for the push button switch
#define ROTARY_ENCODER_DEBOUNCE_TIME 10 // Number of miliseconds to ignore new signals a signal is received
// ++++++++++++++++++++++++ State Machine ++++++++++++++++++++++++
#define SETTING_WELCOME_TIMEOUT 100
#define SETTING_MAX_INACTIVITY_TIME 3000
#define MENU_MAX_DEPTH 10
#define MENU_INIT_VALUES -1,-1,-1,-1,-1,-1,-1,-1,-1,-1
#define MENU_SIZE_MAIN_MENU 17
#define SETTING_SERIAL_MONITOR_BAUD_RATE 9600
#define SETTING_SERIAL_MONITOR_WELCOME_MESSAGE "Let's start Brewing!"
#define SETTING_WELCOME_TIMEOUT 100
#define SETTING_MAX_INACTIVITY_TIME 3000
#define MENU_MAX_DEPTH 10
#define MENU_INIT_VALUES -1,-1,-1,-1,-1,-1,-1,-1,-1,-1
#define MENU_SIZE_MAIN_MENU 17
#define SETTING_SERIAL_MONITOR_BAUD_RATE 9600
#define SETTING_SERIAL_MONITOR_WELCOME_MESSAGE "Let's start Brewing!"
// ######################### LIBRARIES #########################
// ++++++++++++++++++++++++ LiquidCrystal_I2C ++++++++++++++++++++++++
......@@ -64,17 +64,17 @@
#include <LCD.h>
#include <LiquidCrystal_I2C.h>
#define LCD_I2C_ADDR 0x27 // <<----- Add your address here. Find it from I2C Scanner
#define LCD_HORIZONTAL_RESOLUTION 16
#define LCD_VERTICAL_RESOLUTION 2
#define LCD_BACKLIGHT_PIN 3
#define LCD_EN_PIN 2
#define LCD_RW_PIN 1
#define LCD_RS_PIN 0
#define LCD_D4_PIN 4
#define LCD_D5_PIN 5
#define LCD_D6_PIN 6
#define LCD_D7_PIN 7
#define LCD_I2C_ADDR 0x27 // <<----- Add your address here. Find it from I2C Scanner
#define LCD_HORIZONTAL_RESOLUTION 16
#define LCD_VERTICAL_RESOLUTION 2
#define LCD_BACKLIGHT_PIN 3
#define LCD_EN_PIN 2
#define LCD_RW_PIN 1
#define LCD_RS_PIN 0
#define LCD_D4_PIN 4
#define LCD_D5_PIN 5
#define LCD_D6_PIN 6
#define LCD_D7_PIN 7
// ++++++++++++++++++++++++ PT100 +++++++++++++++++++++++++++++++++
#include <PT100.h>
......@@ -92,86 +92,86 @@ eSettingsMenuOptions settingsMenuOption;
eCookingStages cookingStage;
// ++++++++++++++++++++++++ Global Variables ++++++++++++++++++++++++
boolean cooking;
boolean bStageFirstRun;
int clockStartTime;
int clockCounter;
int clockIgnore;
boolean clockStart;
boolean clockEnd;
int cookTime;
int cookTemperature;
//cook_mode_list cookMode;
//int cookMixerSpeed;
int cookHeatPWM;
int startpointTime;
int betaGlucanaseTime;
int debranchingTime;
int proteolyticTime;
int betaAmylaseTime;
int alphaAmylaseTime;
int mashoutTime;
int recirculationTime;
int spargeTime;
int boilTime;
int coolingTime;
int startpointTemperature;
int betaGlucanaseTemperature;
int debranchingTemperature;
int proteolyticTemperature;
int betaAmylaseTemperature;
int alphaAmylaseTemperature;
int mashoutTemperature;
int recirculationTemperature;
int spargeTemperature;
int boilTemperature;
int coolingTemperature;
//int menuSize;
int menu_position[MENU_MAX_DEPTH] = {MENU_INIT_VALUES};
boolean refresh;
boolean repaint;
boolean cooking;
boolean bStageFirstRun;
int clockStartTime;
int clockCounter;
int clockIgnore;
boolean clockStart;
boolean clockEnd;
int cookTime;
int cookTemperature;
//cook_mode_list cookMode;
//int cookMixerSpeed;
int cookHeatPWM;
int startpointTime;
int betaGlucanaseTime;
int debranchingTime;
int proteolyticTime;
int betaAmylaseTime;
int alphaAmylaseTime;
int mashoutTime;
int recirculationTime;
int spargeTime;
int boilTime;
int coolingTime;
int startpointTemperature;
int betaGlucanaseTemperature;
int debranchingTemperature;
int proteolyticTemperature;
int betaAmylaseTemperature;
int alphaAmylaseTemperature;
int mashoutTemperature;
int recirculationTemperature;
int spargeTemperature;
int boilTemperature;
int coolingTemperature;
//int menuSize;
int menu_position[MENU_MAX_DEPTH] = {MENU_INIT_VALUES};
boolean refresh;
boolean repaint;
// ++++++++++++++++++++++++ Interrupts ++++++++++++++++++++++++
static unsigned long lastInterruptTime;
static unsigned long lastInterruptTime;
// ++++++++++++++++++++++++ Rotary Encoder ++++++++++++++++++++++++
volatile int rotaryEncoderVirtualPosition = 0;
volatile int rotaryEncoderMaxPosition = 1;
volatile int rotaryEncoderMinPosition = 0;
volatile int rotaryEncoderSingleStep = 1;
volatile int rotaryEncoderMultiStep = 1;
volatile int rotaryEncoderVirtualPosition = 0;
volatile int rotaryEncoderMaxPosition = 1;
volatile int rotaryEncoderMinPosition = 0;
volatile int rotaryEncoderSingleStep = 1;
volatile int rotaryEncoderMultiStep = 1;
// ++++++++++++++++++++++++ Heating Element Relay ++++++++++++++++++++++++
int iWindowSize; // Time frame to operate in
unsigned long windowStartTime;
double dWattPerPulse;
int iWindowSize; // Time frame to operate in
unsigned long windowStartTime;
double dWattPerPulse;
// ######################### INITIALIZE #########################
// ++++++++++++++++++++++++ Library - LiquidCrystal_I2C ++++++++++++++++++++++++
LiquidCrystal_I2C lcd(LCD_I2C_ADDR, LCD_EN_PIN, LCD_RW_PIN, LCD_RS_PIN, LCD_D4_PIN, LCD_D5_PIN, LCD_D6_PIN, LCD_D7_PIN);
LiquidCrystal_I2C lcd(LCD_I2C_ADDR, LCD_EN_PIN, LCD_RW_PIN, LCD_RS_PIN, LCD_D4_PIN, LCD_D5_PIN, LCD_D6_PIN, LCD_D7_PIN);
// +++++++++++++++++++++++ PT100 +++++++++++++++++++++++
PT100 basePT100(PT100_BASE_OUTPUT_PIN, PT100_BASE_INPUT_PIN, PT100_BASE_TIME_BETWEEN_READINGS, PT100_BASE_DEFAULT_ADC_VMAX, PT100_BASE_DEFAULT_VS, PT100_BASE_DEFAULT_R1_RESISTENCE, PT100_BASE_DEFAULT_LINE_RESISTENCE, PT100_BASE_DEFAULT_OPERATION_RESISTENCE);
PT100 upPT100(PT100_UP_OUTPUT_PIN, PT100_UP_INPUT_PIN, PT100_UP_TIME_BETWEEN_READINGS, PT100_UP_DEFAULT_ADC_VMAX, PT100_UP_DEFAULT_VS, PT100_UP_DEFAULT_R1_RESISTENCE, PT100_UP_DEFAULT_LINE_RESISTENCE, PT100_UP_DEFAULT_OPERATION_RESISTENCE);
PT100 downPT100(PT100_DOWN_OUTPUT_PIN, PT100_DOWN_INPUT_PIN, PT100_DOWN_TIME_BETWEEN_READINGS, PT100_DOWN_DEFAULT_ADC_VMAX, PT100_DOWN_DEFAULT_VS, PT100_DOWN_DEFAULT_R1_RESISTENCE, PT100_DOWN_DEFAULT_LINE_RESISTENCE, PT100_DOWN_DEFAULT_OPERATION_RESISTENCE);
PT100 basePT100(PT100_BASE_OUTPUT_PIN, PT100_BASE_INPUT_PIN, PT100_BASE_TIME_BETWEEN_READINGS, PT100_BASE_DEFAULT_ADC_VMAX, PT100_BASE_DEFAULT_VS, PT100_BASE_DEFAULT_R1_RESISTENCE, PT100_BASE_DEFAULT_LINE_RESISTENCE, PT100_BASE_DEFAULT_OPERATION_RESISTENCE);
PT100 upPT100(PT100_UP_OUTPUT_PIN, PT100_UP_INPUT_PIN, PT100_UP_TIME_BETWEEN_READINGS, PT100_UP_DEFAULT_ADC_VMAX, PT100_UP_DEFAULT_VS, PT100_UP_DEFAULT_R1_RESISTENCE, PT100_UP_DEFAULT_LINE_RESISTENCE, PT100_UP_DEFAULT_OPERATION_RESISTENCE);
PT100 downPT100(PT100_DOWN_OUTPUT_PIN, PT100_DOWN_INPUT_PIN, PT100_DOWN_TIME_BETWEEN_READINGS, PT100_DOWN_DEFAULT_ADC_VMAX, PT100_DOWN_DEFAULT_VS, PT100_DOWN_DEFAULT_R1_RESISTENCE, PT100_DOWN_DEFAULT_LINE_RESISTENCE, PT100_DOWN_DEFAULT_OPERATION_RESISTENCE);
// ######################### INTERRUPTS #########################
void xSetupRotaryEncoder( eRotaryEncoderMode newMode, int newPosition, int newMaxPosition, int newMinPosition, int newSingleStep, int newMultiStep ) {
if( newMode >= 0 ) rotaryEncoderMode = newMode;
if( newPosition >= 0 ) rotaryEncoderVirtualPosition = newPosition;
if( newMaxPosition >= 0 ) rotaryEncoderMaxPosition = newMaxPosition;
if( newMinPosition >= 0 ) rotaryEncoderMinPosition = newMinPosition;
if( newSingleStep >= 0 ) rotaryEncoderSingleStep = newSingleStep;
if( newMultiStep >= 0 ) rotaryEncoderMultiStep = newMultiStep;
if( newMode >= 0 ) rotaryEncoderMode = newMode;
if( newPosition >= 0 ) rotaryEncoderVirtualPosition = newPosition;
if( newMaxPosition >= 0 ) rotaryEncoderMaxPosition = newMaxPosition;
if( newMinPosition >= 0 ) rotaryEncoderMinPosition = newMinPosition;
if( newSingleStep >= 0 ) rotaryEncoderSingleStep = newSingleStep;
if( newMultiStep >= 0 ) rotaryEncoderMultiStep = newMultiStep;
}
void isr () { // Interrupt service routine is executed when a HIGH to LOW transition is detected on CLK
void isr () { // Interrupt service routine is executed when a HIGH to LOW transition is detected on CLK
repaint = true;
refresh = true;
unsigned long interruptTime = millis();
......@@ -200,7 +200,7 @@ void isr () { // Interrupt service routine is executed when a HIGH to LOW tran
// Input of rotary encoder controling time variables
case eRotaryEncoderMode_Time: {
if (!digitalRead(ROTARY_ENCODER_DT_PIN)) {
if (!digitalRead(ROTARY_ENCODER_DT_PIN)) {
if(rotaryEncoderVirtualPosition >= 60) {
rotaryEncoderVirtualPosition = (rotaryEncoderVirtualPosition + rotaryEncoderMultiStep);
}
......@@ -269,113 +269,113 @@ void isr () { // Interrupt service routine is executed when a HIGH to LOW tran
// ######################### START #########################
void xSafeHardwarePowerOff() {
// analogWrite(MIXER_PIN, 0); // Turn mixer OFF for safety
digitalWrite(HEATING_ELEMENT_OUTPUT_PIN, LOW); // Turn heading element OFF for safety
//basePT100.xSafeHardwarePowerOff(); // Turn temperature sensor OFF for safety
// analogWrite(MIXER_PIN, 0); // Turn mixer OFF for safety
digitalWrite(HEATING_ELEMENT_OUTPUT_PIN, LOW); // Turn heading element OFF for safety
//basePT100.xSafeHardwarePowerOff(); // Turn temperature sensor OFF for safety
}
void displayWelcome() {
lcdPrint(" Let's start", " Brewing!"); // Write welcome
delay(SETTING_WELCOME_TIMEOUT); // pause for effect
lcdPrint(" Let's start", " Brewing!"); // Write welcome
delay(SETTING_WELCOME_TIMEOUT); // pause for effect
}
void setup() {
// ++++++++++++++++++++++++ Rotary Encoder ++++++++++++++++++++++++
pinMode (ROTARY_ENCODER_CLK_PIN,INPUT);
pinMode (ROTARY_ENCODER_DT_PIN, INPUT);
pinMode (ROTARY_ENCODER_SW_PIN, INPUT);
attachInterrupt (ROTARY_ENCODER_INTERRUPT_NUMBER, isr, FALLING);
// ++++++++++++++++++++++++ Heating Element Relay ++++++++++++++++++++++++
pinMode (HEATING_ELEMENT_OUTPUT_PIN, OUTPUT);
digitalWrite (HEATING_ELEMENT_OUTPUT_PIN, LOW);
windowStartTime = millis();
dWattPerPulse = HEATING_ELEMENT_MAX_WATTAGE / HEATING_ELEMENT_AC_FREQUENCY_HZ;
// ++++++++++++++++++++++++ Mixer ++++++++++++++++++++++++
// pinMode (MIXER_PIN, OUTPUT);
// analogWrite (MIXER_PIN, 0);
// ++++++++++++++++++++++++ Temperature Sensor PT100 ++++++++++++++++++++++++
//basePT100.setup();
// ++++++++++++++++++++++++ Rotary Encoder ++++++++++++++++++++++++
pinMode (ROTARY_ENCODER_CLK_PIN,INPUT);
pinMode (ROTARY_ENCODER_DT_PIN, INPUT);
pinMode (ROTARY_ENCODER_SW_PIN, INPUT);
attachInterrupt (ROTARY_ENCODER_INTERRUPT_NUMBER, isr, FALLING);
// ++++++++++++++++++++++++ Heating Element Relay ++++++++++++++++++++++++
pinMode (HEATING_ELEMENT_OUTPUT_PIN, OUTPUT);
digitalWrite (HEATING_ELEMENT_OUTPUT_PIN, LOW);
windowStartTime = millis();
dWattPerPulse = HEATING_ELEMENT_MAX_WATTAGE / HEATING_ELEMENT_AC_FREQUENCY_HZ;
// ++++++++++++++++++++++++ Mixer ++++++++++++++++++++++++
// pinMode (MIXER_PIN, OUTPUT);
// analogWrite (MIXER_PIN, 0);
// ++++++++++++++++++++++++ Temperature Sensor PT100 ++++++++++++++++++++++++
//basePT100.setup();
/*
analogReference (INTERNAL1V1); // EXTERNAL && INTERNAL2V56 && INTERNAL1V1
pinMode (PT100_OUTPUT_PIN, OUTPUT); // setup temperature sensor input pin
digitalWrite (PT100_OUTPUT_PIN, LOW); // initialize sensor off
analogReference (INTERNAL1V1); // EXTERNAL && INTERNAL2V56 && INTERNAL1V1
pinMode (PT100_OUTPUT_PIN, OUTPUT); // setup temperature sensor input pin
digitalWrite (PT100_OUTPUT_PIN, LOW); // initialize sensor off
*/
// ++++++++++++++++++++++++ Serial Monitor ++++++++++++++++++++++++
Serial.begin(SETTING_SERIAL_MONITOR_BAUD_RATE); // setup terminal baud rate
Serial.println(SETTING_SERIAL_MONITOR_WELCOME_MESSAGE); // print a start message to the terminal
// ++++++++++++++++++++++++ Library - LiquidCrystal_I2C ++++++++++++++++++++++++
lcd.begin (LCD_HORIZONTAL_RESOLUTION,LCD_VERTICAL_RESOLUTION); // <<----- My LCD was 16x2
lcd.setBacklightPin(LCD_BACKLIGHT_PIN,POSITIVE); // Setup backlight pin
lcd.setBacklight(HIGH); // Switch on the backlight
// ######################### INITIALIZE #########################
// ++++++++++++++++++++++++ Rotary Encoder ++++++++++++++++++++++++
// set operation state | INPUT : eRotaryEncoderMode newMode, int newPosition, int newMaxPosition, int newMinPosition, int newSingleStep, int newMultiStep
xSetupRotaryEncoder( eRotaryEncoderMode_Disabled, 0, 0, 0, 0, 0 );
// ++++++++++++++++++++++++ State Machine ++++++++++++++++++++++++
presetsMenuOption = ePresetsMenu_Trigo;
maltMenuOption = eMaltMenu_CastleMalting_Chteau_Pilsen_2RS;
settingsMenuOption = eSettingsMenu_PT100_Element;
cookingStage = eCookingStage_Startpoint;
// ++++++++++++++++++++++++ Global Variables ++++++++++++++++++++++++
cooking = false;
// ++++++++++++++++++++++++ Serial Monitor ++++++++++++++++++++++++
Serial.begin (SETTING_SERIAL_MONITOR_BAUD_RATE); // setup terminal baud rate
Serial.println (SETTING_SERIAL_MONITOR_WELCOME_MESSAGE); // print a start message to the terminal
// ++++++++++++++++++++++++ Library - LiquidCrystal_I2C ++++++++++++++++++++++++
lcd.begin (LCD_HORIZONTAL_RESOLUTION,LCD_VERTICAL_RESOLUTION); // <<----- My LCD was 16x2
lcd.setBacklightPin (LCD_BACKLIGHT_PIN,POSITIVE); // Setup backlight pin
lcd.setBacklight (HIGH); // Switch on the backlight
// ######################### INITIALIZE #########################
// ++++++++++++++++++++++++ Rotary Encoder ++++++++++++++++++++++++
// set operation state | INPUT : eRotaryEncoderMode newMode, int newPosition, int newMaxPosition, int newMinPosition, int newSingleStep, int newMultiStep
xSetupRotaryEncoder ( eRotaryEncoderMode_Disabled, 0, 0, 0, 0, 0 );
// ++++++++++++++++++++++++ State Machine ++++++++++++++++++++++++
presetsMenuOption = ePresetsMenu_Trigo;
maltMenuOption = eMaltMenu_CastleMalting_Chteau_Pilsen_2RS;
settingsMenuOption = eSettingsMenu_PT100_Element;
cookingStage = eCookingStage_Startpoint;
// ++++++++++++++++++++++++ Global Variables ++++++++++++++++++++++++
cooking = false;
bStageFirstRun = true;
clockStartTime = 0;
clockCounter = 0;
clockIgnore = 0;
clockStart = false;
clockEnd = false;
cookTime = 3600;
cookTemperature = 25;
//cookMode = quick_start;
//cookMixerSpeed = 120;
cookHeatPWM = 5;
startpointTime = 120;
betaGlucanaseTime = 0;
debranchingTime = 0;
proteolyticTime = 0;
betaAmylaseTime = 3600;
alphaAmylaseTime = 1800;
mashoutTime = 300;
recirculationTime = 1200;
spargeTime = 1200;
boilTime = 5400;
coolingTime = 120;
startpointTemperature = 45;
betaGlucanaseTemperature = 40;
debranchingTemperature = 40;
proteolyticTemperature = 50;
betaAmylaseTemperature = 60;
alphaAmylaseTemperature = 70;
mashoutTemperature = 80;
recirculationTemperature = 80;
spargeTemperature = 80;
boilTemperature = 100;
coolingTemperature = 25;
refresh = true;
repaint = true;
// ++++++++++++++++++++++++ Interrupts ++++++++++++++++++++++++
lastInterruptTime = 0;
// ++++++++++++++++++++++++ PID ++++++++++++++++++++++++
iWindowSize = HEATING_ELEMENT_DEFAULT_WINDOW_SIZE; // Time frame to operate in
clockStartTime = 0;
clockCounter = 0;
clockIgnore = 0;
clockStart = false;
clockEnd = false;
cookTime = 3600;
cookTemperature = 25;
//cookMode = quick_start;
//cookMixerSpeed = 120;
cookHeatPWM = 5;
startpointTime = 120;
betaGlucanaseTime = 0;
debranchingTime = 0;
proteolyticTime = 0;
betaAmylaseTime = 3600;
alphaAmylaseTime = 1800;
mashoutTime = 300;
recirculationTime = 1200;
spargeTime = 1200;
boilTime = 5400;
coolingTime = 120;
startpointTemperature = 45;
betaGlucanaseTemperature = 40;
debranchingTemperature = 40;
proteolyticTemperature = 50;
betaAmylaseTemperature = 60;
alphaAmylaseTemperature = 70;
mashoutTemperature = 80;
recirculationTemperature = 80;
spargeTemperature = 80;
boilTemperature = 100;
coolingTemperature = 25;
refresh = true;
repaint = true;
// ++++++++++++++++++++++++ Interrupts ++++++++++++++++++++++++
lastInterruptTime = 0;
// ++++++++++++++++++++++++ PID ++++++++++++++++++++++++
iWindowSize = HEATING_ELEMENT_DEFAULT_WINDOW_SIZE; // Time frame to operate in
// ######################### Code - Run Once #########################
xSafeHardwarePowerOff();
displayWelcome();
xSetupRotaryEncoder( eRotaryEncoderMode_Menu, eMainMenu_GO, MENU_SIZE_MAIN_MENU - 1, 0, 1, 1 );
xSafeHardwarePowerOff ();
displayWelcome ();
xSetupRotaryEncoder ( eRotaryEncoderMode_Menu, eMainMenu_GO, MENU_SIZE_MAIN_MENU - 1, 0, 1, 1 );
}
// ######################### START #########################
......@@ -383,7 +383,7 @@ void setup() {
void loop() {
unsigned long inactivityTime = millis() - lastInterruptTime;
if(inactivityTime > SETTING_MAX_INACTIVITY_TIME) { // Inactivity check
if(inactivityTime > SETTING_MAX_INACTIVITY_TIME) { // Inactivity check
if(refresh) {
repaint = true;
refresh = false;
......@@ -398,32 +398,32 @@ void loop() {
}
void xPaintStatusTemplate() {
// Clear LCD
lcd.clear();
// Clear LCD
lcd.clear();
// Position the cursor at the begining of where the temperature template goes onto the screen
lcd.home();
// Position the cursor at the begining of where the temperature template goes onto the screen
lcd.home();
// Print the target and measured temperature template
if(cooking) {
lcd.print("ON : 000*C/000*C");
}
else {
lcd.print("OFF: 000*C/000*C");
}
// Print the target and measured temperature template
if(cooking) {
lcd.print("ON : 000*C/000*C");
}
else {
lcd.print("OFF: 000*C/000*C");
}
// Position the cursor at the begining of where the mode and time template goes onto the screen
lcd.setCursor (0,LCD_VERTICAL_RESOLUTION-1);
// Position the cursor at the begining of where the mode and time template goes onto the screen
lcd.setCursor (0,LCD_VERTICAL_RESOLUTION-1);
lcd.print("**** 00:00");
lcd.print("**** 00:00");
}
void displayStatus() {
// Check whether a template repaint is required
if(repaint) {
// Repaint the LCD template
xPaintStatusTemplate();
// Repaint the LCD template
xPaintStatusTemplate();
// Reset the repaint flag after the repaint has been done
repaint = false;
......@@ -487,9 +487,9 @@ void displayMainMenu() {
MainMenu_GO();
menu_position[0] = -1;
// reset operation state | INPUT : eRotaryEncoderMode newMode, int newPosition, int newMaxPosition, int newMinPosition, int newSingleStep, int newMultiStep
xSetupRotaryEncoder( eRotaryEncoderMode_Menu, eMainMenu_GO, MENU_SIZE_MAIN_MENU - 1, 0, 1, 1 );
// reset operation state | INPUT : eRotaryEncoderMode newMode, int newPosition, int newMaxPosition, int newMinPosition, int newSingleStep, int newMultiStep
xSetupRotaryEncoder( eRotaryEncoderMode_Menu, eMainMenu_GO, MENU_SIZE_MAIN_MENU - 1, 0, 1, 1 );
break;
}
......@@ -497,9 +497,9 @@ void displayMainMenu() {
MainMenu_Presets();
menu_position[0] = -1;
// reset operation state | INPUT : eRotaryEncoderMode newMode, int newPosition, int newMaxPosition, int newMinPosition, int newSingleStep, int newMultiStep
xSetupRotaryEncoder( eRotaryEncoderMode_Menu, eMainMenu_Presets, MENU_SIZE_MAIN_MENU - 1, 0, 1, 1 );
// reset operation state | INPUT : eRotaryEncoderMode newMode, int newPosition, int newMaxPosition, int newMinPosition, int newSingleStep, int newMultiStep
xSetupRotaryEncoder( eRotaryEncoderMode_Menu, eMainMenu_Presets, MENU_SIZE_MAIN_MENU - 1, 0, 1, 1 );
break;
}
......@@ -507,9 +507,9 @@ void displayMainMenu() {
MainMenu_Malt();
menu_position[0] = -1;
// reset operation state | INPUT : eRotaryEncoderMode newMode, int newPosition, int newMaxPosition, int newMinPosition, int newSingleStep, int newMultiStep
xSetupRotaryEncoder( eRotaryEncoderMode_Menu, eMainMenu_Malt, MENU_SIZE_MAIN_MENU - 1, 0, 1, 1 );
// reset operation state | INPUT : eRotaryEncoderMode newMode, int newPosition, int newMaxPosition, int newMinPosition, int newSingleStep, int newMultiStep
xSetupRotaryEncoder( eRotaryEncoderMode_Menu, eMainMenu_Malt, MENU_SIZE_MAIN_MENU - 1, 0, 1, 1 );
break;
}
......@@ -517,9 +517,9 @@ void displayMainMenu() {
MainMenu_Startpoint();
menu_position[0] = -1;
// reset operation state | INPUT : eRotaryEncoderMode newMode, int newPosition, int newMaxPosition, int newMinPosition, int newSingleStep, int newMultiStep
xSetupRotaryEncoder( eRotaryEncoderMode_Menu, eMainMenu_Startpoint, MENU_SIZE_MAIN_MENU - 1, 0, 1, 1 );
// reset operation state | INPUT : eRotaryEncoderMode newMode, int newPosition, int newMaxPosition, int newMinPosition, int newSingleStep, int newMultiStep
xSetupRotaryEncoder( eRotaryEncoderMode_Menu, eMainMenu_Startpoint, MENU_SIZE_MAIN_MENU - 1, 0, 1, 1 );
break;
}
......@@ -527,9 +527,9 @@ void displayMainMenu() {
MainMenu_BetaGlucanase();
menu_position[0] = -1;
// reset operation state | INPUT : eRotaryEncoderMode newMode, int newPosition, int newMaxPosition, int newMinPosition, int newSingleStep, int newMultiStep
xSetupRotaryEncoder( eRotaryEncoderMode_Menu, eMainMenu_BetaGlucanase, MENU_SIZE_MAIN_MENU - 1, 0, 1, 1 );
// reset operation state | INPUT : eRotaryEncoderMode newMode, int newPosition, int newMaxPosition, int newMinPosition, int newSingleStep, int newMultiStep
xSetupRotaryEncoder( eRotaryEncoderMode_Menu, eMainMenu_BetaGlucanase, MENU_SIZE_MAIN_MENU - 1, 0, 1, 1 );
break;
}
......@@ -537,9 +537,9 @@ void displayMainMenu() {
MainMenu_Debranching();
menu_position[0] = -1;
// reset operation state | INPUT : eRotaryEncoderMode newMode, int newPosition, int newMaxPosition, int newMinPosition, int newSingleStep, int newMultiStep
xSetupRotaryEncoder( eRotaryEncoderMode_Menu, eMainMenu_Settings, MENU_SIZE_MAIN_MENU - 1, 0, 1, 1 );
// reset operation state | INPUT : eRotaryEncoderMode newMode, int newPosition, int newMaxPosition, int newMinPosition, int newSingleStep, int newMultiStep
xSetupRotaryEncoder( eRotaryEncoderMode_Menu, eMainMenu_Settings, MENU_SIZE_MAIN_MENU - 1, 0, 1, 1 );
break;
}
......@@ -547,9 +547,9 @@ void displayMainMenu() {
MainMenu_Proteolytic();
menu_position[0] = -1;
// reset operation state | INPUT : eRotaryEncoderMode newMode, int newPosition, int newMaxPosition, int newMinPosition, int newSingleStep, int newMultiStep
xSetupRotaryEncoder( eRotaryEncoderMode_Menu, eMainMenu_Proteolytic, MENU_SIZE_MAIN_MENU - 1, 0, 1, 1 );
// reset operation state | INPUT : eRotaryEncoderMode newMode, int newPosition, int newMaxPosition, int newMinPosition, int newSingleStep, int newMultiStep
xSetupRotaryEncoder( eRotaryEncoderMode_Menu, eMainMenu_Proteolytic, MENU_SIZE_MAIN_MENU - 1, 0, 1, 1 );
break;
}
......@@ -557,9 +557,9 @@ void displayMainMenu() {
MainMenu_BetaAmylase();
menu_position[0] = -1;
// reset operation state | INPUT : eRotaryEncoderMode newMode, int newPosition, int newMaxPosition, int newMinPosition, int newSingleStep, int newMultiStep
xSetupRotaryEncoder( eRotaryEncoderMode_Menu, eMainMenu_BetaAmylase, MENU_SIZE_MAIN_MENU - 1, 0, 1, 1 );
// reset operation state | INPUT : eRotaryEncoderMode newMode, int newPosition, int newMaxPosition, int newMinPosition, int newSingleStep, int newMultiStep
xSetupRotaryEncoder( eRotaryEncoderMode_Menu, eMainMenu_BetaAmylase, MENU_SIZE_MAIN_MENU - 1, 0, 1, 1 );
break;
}
......@@ -567,9 +567,9 @@ void displayMainMenu() {
MainMenu_AlphaAmylase();
menu_position[0] = -1;
// reset operation state | INPUT : eRotaryEncoderMode newMode, int newPosition, int newMaxPosition, int newMinPosition, int newSingleStep, int newMultiStep
xSetupRotaryEncoder( eRotaryEncoderMode_Menu, eMainMenu_AlphaAmylase, MENU_SIZE_MAIN_MENU - 1, 0, 1, 1 );
// reset operation state | INPUT : eRotaryEncoderMode newMode, int newPosition, int newMaxPosition, int newMinPosition, int newSingleStep, int newMultiStep
xSetupRotaryEncoder( eRotaryEncoderMode_Menu, eMainMenu_AlphaAmylase, MENU_SIZE_MAIN_MENU - 1, 0, 1, 1 );
break;
}
......@@ -577,9 +577,9 @@ void displayMainMenu() {
MainMenu_Mashout();
menu_position[0] = -1;
// reset operation state | INPUT : eRotaryEncoderMode newMode, int newPosition, int newMaxPosition, int newMinPosition, int newSingleStep, int newMultiStep
xSetupRotaryEncoder( eRotaryEncoderMode_Menu, eMainMenu_Mashout, MENU_SIZE_MAIN_MENU - 1, 0, 1, 1 );
// reset operation state | INPUT : eRotaryEncoderMode newMode, int newPosition, int newMaxPosition, int newMinPosition, int newSingleStep, int newMultiStep
xSetupRotaryEncoder( eRotaryEncoderMode_Menu, eMainMenu_Mashout, MENU_SIZE_MAIN_MENU - 1, 0, 1, 1 );
break;
}
......@@ -587,9 +587,9 @@ void displayMainMenu() {
MainMenu_Recirculation();
menu_position[0] = -1;
// reset operation state | INPUT : eRotaryEncoderMode newMode, int newPosition, int newMaxPosition, int newMinPosition, int newSingleStep, int newMultiStep
xSetupRotaryEncoder( eRotaryEncoderMode_Menu, eMainMenu_Recirculation, MENU_SIZE_MAIN_MENU - 1, 0, 1, 1 );
// reset operation state | INPUT : eRotaryEncoderMode newMode, int newPosition, int newMaxPosition, int newMinPosition, int newSingleStep, int newMultiStep
xSetupRotaryEncoder( eRotaryEncoderMode_Menu, eMainMenu_Recirculation, MENU_SIZE_MAIN_MENU - 1, 0, 1, 1 );
break;
}
......@@ -597,9 +597,9 @@ void displayMainMenu() {
MainMenu_Sparge();
menu_position[0] = -1;
// reset operation state | INPUT : eRotaryEncoderMode newMode, int newPosition, int newMaxPosition, int newMinPosition, int newSingleStep, int newMultiStep
xSetupRotaryEncoder( eRotaryEncoderMode_Menu, eMainMenu_Sparge, MENU_SIZE_MAIN_MENU - 1, 0, 1, 1 );
// reset operation state | INPUT : eRotaryEncoderMode newMode, int newPosition, int newMaxPosition, int newMinPosition, int newSingleStep, int newMultiStep
xSetupRotaryEncoder( eRotaryEncoderMode_Menu, eMainMenu_Sparge, MENU_SIZE_MAIN_MENU - 1, 0, 1, 1 );
break;
}
......@@ -607,9 +607,9 @@ void displayMainMenu() {
MainMenu_Boil();
menu_position[0] = -1;
// reset operation state | INPUT : eRotaryEncoderMode newMode, int newPosition, int newMaxPosition, int newMinPosition, int newSingleStep, int newMultiStep
xSetupRotaryEncoder( eRotaryEncoderMode_Menu, eMainMenu_Boil, MENU_SIZE_MAIN_MENU - 1, 0, 1, 1 );
// reset operation state | INPUT : eRotaryEncoderMode newMode, int newPosition, int newMaxPosition, int newMinPosition, int newSingleStep, int newMultiStep
xSetupRotaryEncoder( eRotaryEncoderMode_Menu, eMainMenu_Boil, MENU_SIZE_MAIN_MENU - 1, 0, 1, 1 );
break;
}
......@@ -617,9 +617,9 @@ void displayMainMenu() {
MainMenu_Hops();
menu_position[0] = -1;
// reset operation state | INPUT : eRotaryEncoderMode newMode, int newPosition, int newMaxPosition, int newMinPosition, int newSingleStep, int newMultiStep
xSetupRotaryEncoder( eRotaryEncoderMode_Menu, eMainMenu_Hops, MENU_SIZE_MAIN_MENU - 1, 0, 1, 1 );
// reset operation state | INPUT : eRotaryEncoderMode newMode, int newPosition, int newMaxPosition, int newMinPosition, int newSingleStep, int newMultiStep
xSetupRotaryEncoder( eRotaryEncoderMode_Menu, eMainMenu_Hops, MENU_SIZE_MAIN_MENU - 1, 0, 1, 1 );
break;
}
......@@ -627,9 +627,9 @@ void displayMainMenu() {
MainMenu_Cooling();
menu_position[0] = -1;
// reset operation state | INPUT : eRotaryEncoderMode newMode, int newPosition, int newMaxPosition, int newMinPosition, int newSingleStep, int newMultiStep
xSetupRotaryEncoder( eRotaryEncoderMode_Menu, eMainMenu_Cooling, MENU_SIZE_MAIN_MENU - 1, 0, 1, 1 );
// reset operation state | INPUT : eRotaryEncoderMode newMode, int newPosition, int newMaxPosition, int newMinPosition, int newSingleStep, int newMultiStep
xSetupRotaryEncoder( eRotaryEncoderMode_Menu, eMainMenu_Cooling, MENU_SIZE_MAIN_MENU - 1, 0, 1, 1 );
break;
}
......@@ -749,17 +749,17 @@ void displayMainMenu() {
}
default: {
// reset operation state | INPUT : eRotaryEncoderMode newMode, int newPosition, int newMaxPosition, int newMinPosition, int newSingleStep, int newMultiStep
xSetupRotaryEncoder( eRotaryEncoderMode_Menu, eMainMenu_GO, MENU_SIZE_MAIN_MENU - 1, 0, 1, 1 );
xSetupRotaryEncoder( eRotaryEncoderMode_Menu, eMainMenu_GO, MENU_SIZE_MAIN_MENU - 1, 0, 1, 1 );
}
}
repaint = false;
}
if ((digitalRead(ROTARY_ENCODER_SW_PIN))) { // check if pushbutton is pressed
if ((digitalRead(ROTARY_ENCODER_SW_PIN))) { // check if pushbutton is pressed
menu_position[0] = rotaryEncoderVirtualPosition;
while (digitalRead(ROTARY_ENCODER_SW_PIN)) {} // wait til switch is released
delay(10); // debounce
while (digitalRead(ROTARY_ENCODER_SW_PIN)) {} // wait til switch is released
delay(10); // debounce
break;
}
}
......@@ -767,7 +767,7 @@ void displayMainMenu() {
}
void MainMenu_GO() {
startBrewing();
startBrewing();
backToStatus();
}
......@@ -775,91 +775,91 @@ void MainMenu_GO() {
void MainMenu_Presets() {
backToStatus();
}
void MainMenu_Malt() {
backToStatus();
}
void MainMenu_Startpoint() {
startpointTime = getTimer( startpointTime );
startpointTemperature = xSetGenericValue( startpointTemperature, 0, 120, "temperature", "*C" );
startpointTime = getTimer( startpointTime );
startpointTemperature = xSetGenericValue( startpointTemperature, 0, 120, "temperature", "*C" );
backToStatus();
}
void MainMenu_BetaGlucanase() {
betaGlucanaseTime = getTimer( betaGlucanaseTime );
betaGlucanaseTemperature = xSetGenericValue( betaGlucanaseTemperature, 0, 120, "temperature", "*C" );
betaGlucanaseTime = getTimer( betaGlucanaseTime );
betaGlucanaseTemperature = xSetGenericValue( betaGlucanaseTemperature, 0, 120, "temperature", "*C" );
backToStatus();
}
void MainMenu_Debranching() {
debranchingTime = getTimer( debranchingTime );
debranchingTemperature = xSetGenericValue( debranchingTemperature, 0, 120, "temperature", "*C" );
debranchingTime = getTimer( debranchingTime );
debranchingTemperature = xSetGenericValue( debranchingTemperature, 0, 120, "temperature", "*C" );
backToStatus();
}
void MainMenu_Proteolytic() {
proteolyticTime = getTimer( proteolyticTime );
proteolyticTemperature = xSetGenericValue( proteolyticTemperature, 0, 120, "temperature", "*C" );
proteolyticTime = getTimer( proteolyticTime );
proteolyticTemperature = xSetGenericValue( proteolyticTemperature, 0, 120, "temperature", "*C" );
backToStatus();
}
void MainMenu_BetaAmylase() {
betaAmylaseTime = getTimer( betaAmylaseTime );
betaAmylaseTemperature = xSetGenericValue( betaAmylaseTemperature, 0, 120, "temperature", "*C" );
betaAmylaseTime = getTimer( betaAmylaseTime );
betaAmylaseTemperature = xSetGenericValue( betaAmylaseTemperature, 0, 120, "temperature", "*C" );
backToStatus();
}
void MainMenu_AlphaAmylase() {
alphaAmylaseTime = getTimer( alphaAmylaseTime );
alphaAmylaseTemperature = xSetGenericValue( alphaAmylaseTemperature, 0, 120, "temperature", "*C" );
alphaAmylaseTime = getTimer( alphaAmylaseTime );
alphaAmylaseTemperature = xSetGenericValue( alphaAmylaseTemperature, 0, 120, "temperature", "*C" );
backToStatus();
}
void MainMenu_Mashout() {
mashoutTime = getTimer( mashoutTime );
mashoutTemperature = xSetGenericValue( mashoutTemperature, 0, 120, "temperature", "*C" );
mashoutTime = getTimer( mashoutTime );
mashoutTemperature = xSetGenericValue( mashoutTemperature, 0, 120, "temperature", "*C" );
backToStatus();
}
void MainMenu_Recirculation() {
recirculationTime = getTimer( recirculationTime );
recirculationTemperature = xSetGenericValue( recirculationTemperature, 0, 120, "temperature", "*C" );
recirculationTime = getTimer( recirculationTime );
recirculationTemperature = xSetGenericValue( recirculationTemperature, 0, 120, "temperature", "*C" );
backToStatus();
}
void MainMenu_Sparge() {
spargeTime = getTimer( spargeTime );
spargeTemperature = xSetGenericValue( spargeTemperature, 0, 120, "temperature", "*C" );
spargeTime = getTimer( spargeTime );
spargeTemperature = xSetGenericValue( spargeTemperature, 0, 120, "temperature", "*C" );
backToStatus();
}
void MainMenu_Boil() {
boilTime = getTimer( boilTime );
boilTemperature = xSetGenericValue( boilTemperature, 0, 120, "temperature", "*C" );
boilTime = getTimer( boilTime );
boilTemperature = xSetGenericValue( boilTemperature, 0, 120, "temperature", "*C" );
backToStatus();
}
......@@ -867,13 +867,13 @@ void MainMenu_Boil() {
void MainMenu_Hops() {
backToStatus();
}
void MainMenu_Cooling() {
coolingTime = getTimer( coolingTime );
coolingTemperature = xSetGenericValue( coolingTemperature, 0, 120, "temperature", "*C" );
coolingTime = getTimer( coolingTime );
coolingTemperature = xSetGenericValue( coolingTemperature, 0, 120, "temperature", "*C" );
backToStatus();
}
......@@ -889,78 +889,78 @@ void MainMenu_Back() {
}
void xCountTheTime( int temperatureRange ) {
// Check if the machine is in the right temperature range, for the current mode,
if(!(basePT100.getCurrentTemperature() > (cookTemperature - temperatureRange) && basePT100.getCurrentTemperature() < (cookTemperature + temperatureRange))) {
clockIgnore += millis() - clockStartTime - clockCounter;
}
// Calculate the remaining time on the clock
clockCounter = cookTime - ((millis() - clockStartTime - clockIgnore) / 1000);
// Check if the machine is in the right temperature range, for the current mode,
if(!(basePT100.getCurrentTemperature() > (cookTemperature - temperatureRange) && basePT100.getCurrentTemperature() < (cookTemperature + temperatureRange))) {
clockIgnore += millis() - clockStartTime - clockCounter;
}
// Calculate the remaining time on the clock
clockCounter = cookTime - ((millis() - clockStartTime - clockIgnore) / 1000);
}
bool isTimeLeft() {
if( clockCounter >= cookTime ) {
return false;
}
return true;
if( clockCounter >= cookTime ) {
return false;
}
return true;
}
double ulWattToWindowTime( double ulAppliedWatts ) {
double ulPulsesRequired = ulAppliedWatts / dWattPerPulse;
return (double)iWindowSize / 1000.0 * ulPulsesRequired;
return (double)iWindowSize / 1000.0 * ulPulsesRequired;
}
bool xRegulateTemperature() {
double difference = basePT100.getCurrentTemperature() - cookTemperature;
bool overTemperature = false;
double wattage = 0.0;
// Deviation between the cook temperature set and the cook temperature measured
if( difference < 0.0 ) {
difference = difference * (-1.0);
overTemperature = true;
}
// Calculate applied wattage, based on the distance from the target temperature
if( overTemperature ) {
// turn it off
wattage = 0.0;
} else {
if(difference <= 1) {
// turn it off
wattage = 0.0;
} else {
if(difference <= 3) {
// pulse lightly at 500 watt
wattage = 500.0;
} else {
if(difference <= 6) {
// pulse moderately at 1000 watt
wattage = 1000.0;
} else {
if(difference <= 9) {
// pulse hardly at 2000 watt
wattage = 2000.0;
} else {
//pulse constantly at HEATING_ELEMENT_MAX_WATTAGE watt
wattage = HEATING_ELEMENT_MAX_WATTAGE;
}
}
}
}
}
// Update the recorded time for the begining of the window, if the previous window has passed
double difference = basePT100.getCurrentTemperature() - cookTemperature;
bool overTemperature = false;
double wattage = 0.0;
// Deviation between the cook temperature set and the cook temperature measured
if( difference < 0.0 ) {
difference = difference * (-1.0);
overTemperature = true;
}
// Calculate applied wattage, based on the distance from the target temperature
if( overTemperature ) {
// turn it off
wattage = 0.0;
} else {
if(difference <= 1) {
// turn it off
wattage = 0.0;
} else {
if(difference <= 3) {
// pulse lightly at 500 watt
wattage = 500.0;
} else {
if(difference <= 6) {
// pulse moderately at 1000 watt
wattage = 1000.0;
} else {
if(difference <= 9) {
// pulse hardly at 2000 watt
wattage = 2000.0;
} else {
//pulse constantly at HEATING_ELEMENT_MAX_WATTAGE watt
wattage = HEATING_ELEMENT_MAX_WATTAGE;
}
}
}
}
}
// Update the recorded time for the begining of the window, if the previous window has passed
while((millis() - windowStartTime) > iWindowSize) { // Check if it's time to vary the pulse width modulation and if so do it by shifting the "Relay in ON" Window
windowStartTime += iWindowSize;
}
// Apply wattage to the element at the right time
if( ulWattToWindowTime( wattage ) > (millis() - windowStartTime)) {
digitalWrite(HEATING_ELEMENT_OUTPUT_PIN,HIGH);
} else {
digitalWrite(HEATING_ELEMENT_OUTPUT_PIN,LOW);
}
// Apply wattage to the element at the right time
if( ulWattToWindowTime( wattage ) > (millis() - windowStartTime)) {
digitalWrite(HEATING_ELEMENT_OUTPUT_PIN,HIGH);
} else {
digitalWrite(HEATING_ELEMENT_OUTPUT_PIN,LOW);
}
}
void xWarnClockEnded() {
......@@ -968,69 +968,69 @@ void xWarnClockEnded() {
}
void xStageFirstRun( int stageTime, int stageTemperature ) {
// Set the clock
cookTime = stageTime;
// Set the target temperature
cookTemperature = stageTemperature;
// Reset the clock
clockStartTime = millis();
clockIgnore = 0;
// Set the clock
cookTime = stageTime;
// Set the target temperature
cookTemperature = stageTemperature;
// Reset the clock
clockStartTime = millis();
clockIgnore = 0;
}
void xTransitionIntoStage_GlobalVariables(eCookingStages nextStage) {
// Reset global stage variables
bStageFirstRun = true;
cookingStage = nextStage;
// Reset global stage variables
bStageFirstRun = true;
cookingStage = nextStage;
}
void xTransitionIntoStage(eCookingStages nextStage) {
// Turn off all hardware that can damage itself if the machine is not cooking
xSafeHardwarePowerOff();
// Warn the user a stage has ended
xWarnClockEnded();
// Reset global stage variables
xTransitionIntoStage_GlobalVariables( nextStage );
// Turn off all hardware that can damage itself if the machine is not cooking
xSafeHardwarePowerOff();
// Warn the user a stage has ended
xWarnClockEnded();
// Reset global stage variables
xTransitionIntoStage_GlobalVariables( nextStage );
}
void xBasicStageOperation( int iStageTime, int iStageTemperature, int iStageTemperatureRange, eCookingStages nextStage ) {
if(bStageFirstRun) {
// Don't run this again
bStageFirstRun = false;
// When the stage should be skipped
if( iStageTime == 0) {
// Continue to the next stage
xTransitionIntoStage_GlobalVariables( nextStage );
// There is nothing to do, in this stage
return;
} else {
// Set the clock, target temperature and Reset the clock
xStageFirstRun( iStageTime, iStageTemperature );
}
} else {
// Account for time spent at the target temperature | Input 1: range in ºC within which the target temperature is considered to be reached
xCountTheTime( iStageTemperatureRange );
if( isTimeLeft() ) {
// Do temperature control
xRegulateTemperature();
} else {
// Continue to the next stage
xTransitionIntoStage( nextStage );
// There is nothing to do, in this stage
return;
}
}
// There is nothing to do, in this iteration
return;
if(bStageFirstRun) {
// Don't run this again
bStageFirstRun = false;
// When the stage should be skipped
if( iStageTime == 0) {
// Continue to the next stage
xTransitionIntoStage_GlobalVariables( nextStage );
// There is nothing to do, in this stage
return;
} else {
// Set the clock, target temperature and Reset the clock
xStageFirstRun( iStageTime, iStageTemperature );
}
} else {
// Account for time spent at the target temperature | Input 1: range in ºC within which the target temperature is considered to be reached
xCountTheTime( iStageTemperatureRange );
if( isTimeLeft() ) {
// Do temperature control
xRegulateTemperature();
} else {
// Continue to the next stage
xTransitionIntoStage( nextStage );
// There is nothing to do, in this stage
return;
}
}
// There is nothing to do, in this iteration
return;
}
void xWarnCookEnded() {
......@@ -1041,103 +1041,103 @@ void operateMachine() {
// Measure temperature, for effect
basePT100.measure();
upPT100.measure();
downPT100.measure();
upPT100.measure();
downPT100.measure();
// If cooking is done, return (this is a nice place to double check safety and ensure the cooking parts aren't on.
if(!cooking) {
xSafeHardwarePowerOff();
xSafeHardwarePowerOff();
return;
}
// Operate the machine according to the current mode
switch(cookingStage) {
case eCookingStage_Startpoint: {
// A basic operation for a basic stage
xBasicStageOperation( startpointTime, startpointTemperature, 1, eCookingStage_BetaGlucanase );
// There is nothing to do, in this iteration
break;
}
case eCookingStage_BetaGlucanase: {
// A basic operation for a basic stage
xBasicStageOperation( betaGlucanaseTime, betaGlucanaseTemperature, 1, eCookingStage_Debranching );
// There is nothing to do, in this iteration
break;
}
case eCookingStage_Debranching: {
// A basic operation for a basic stage
xBasicStageOperation( debranchingTime, debranchingTemperature, 1, eCookingStage_Proteolytic );
// There is nothing to do, in this iteration
break;
}
case eCookingStage_Proteolytic: {
// A basic operation for a basic stage
xBasicStageOperation( proteolyticTime, proteolyticTemperature, 1, eCookingStage_BetaAmylase );
// There is nothing to do, in this iteration
break;
}
case eCookingStage_BetaAmylase: {
// A basic operation for a basic stage
xBasicStageOperation( betaAmylaseTime, betaAmylaseTemperature, 1, eCookingStage_AlphaAmylase );
// There is nothing to do, in this iteration
break;
}
case eCookingStage_AlphaAmylase: {
// A basic operation for a basic stage
xBasicStageOperation( alphaAmylaseTime, alphaAmylaseTemperature, 1, eCookingStage_Mashout );
// There is nothing to do, in this iteration
break;
}
case eCookingStage_Mashout: {
// A basic operation for a basic stage
xBasicStageOperation( mashoutTime, mashoutTemperature, 1, eCookingStage_Recirculation );
// There is nothing to do, in this iteration
break;
}
case eCookingStage_Recirculation: {
// A basic operation for a basic stage
xBasicStageOperation( recirculationTime, recirculationTemperature, 1, eCookingStage_Sparge );
// There is nothing to do, in this iteration
break;
}
case eCookingStage_Sparge: {
// A basic operation for a basic stage
xBasicStageOperation( spargeTime, spargeTemperature, 1, eCookingStage_Boil );
// There is nothing to do, in this iteration
break;
}
case eCookingStage_Boil: {
// A basic operation for a basic stage
xBasicStageOperation( boilTime, boilTemperature, 1, eCookingStage_Cooling );
// There is nothing to do, in this iteration
break;
}
case eCookingStage_Cooling: {
// A basic operation for a basic stage
xBasicStageOperation( coolingTime, coolingTemperature, 1, eCookingStage_Done );
// There is nothing to do, in this iteration
break;
}
default : {
// Update state
cooking = false;
// Warn the user that the cooking is done
xWarnCookEnded();
}
}
// Operate the machine according to the current mode
switch(cookingStage) {
case eCookingStage_Startpoint: {
// A basic operation for a basic stage
xBasicStageOperation( startpointTime, startpointTemperature, 1, eCookingStage_BetaGlucanase );
// There is nothing to do, in this iteration
break;
}
case eCookingStage_BetaGlucanase: {
// A basic operation for a basic stage
xBasicStageOperation( betaGlucanaseTime, betaGlucanaseTemperature, 1, eCookingStage_Debranching );
// There is nothing to do, in this iteration
break;
}
case eCookingStage_Debranching: {
// A basic operation for a basic stage
xBasicStageOperation( debranchingTime, debranchingTemperature, 1, eCookingStage_Proteolytic );
// There is nothing to do, in this iteration
break;
}
case eCookingStage_Proteolytic: {
// A basic operation for a basic stage
xBasicStageOperation( proteolyticTime, proteolyticTemperature, 1, eCookingStage_BetaAmylase );
// There is nothing to do, in this iteration
break;
}
case eCookingStage_BetaAmylase: {
// A basic operation for a basic stage
xBasicStageOperation( betaAmylaseTime, betaAmylaseTemperature, 1, eCookingStage_AlphaAmylase );
// There is nothing to do, in this iteration
break;
}
case eCookingStage_AlphaAmylase: {
// A basic operation for a basic stage
xBasicStageOperation( alphaAmylaseTime, alphaAmylaseTemperature, 1, eCookingStage_Mashout );
// There is nothing to do, in this iteration
break;
}
case eCookingStage_Mashout: {
// A basic operation for a basic stage
xBasicStageOperation( mashoutTime, mashoutTemperature, 1, eCookingStage_Recirculation );
// There is nothing to do, in this iteration
break;
}
case eCookingStage_Recirculation: {
// A basic operation for a basic stage
xBasicStageOperation( recirculationTime, recirculationTemperature, 1, eCookingStage_Sparge );
// There is nothing to do, in this iteration
break;
}
case eCookingStage_Sparge: {
// A basic operation for a basic stage
xBasicStageOperation( spargeTime, spargeTemperature, 1, eCookingStage_Boil );
// There is nothing to do, in this iteration
break;
}
case eCookingStage_Boil: {
// A basic operation for a basic stage
xBasicStageOperation( boilTime, boilTemperature, 1, eCookingStage_Cooling );
// There is nothing to do, in this iteration
break;
}
case eCookingStage_Cooling: {
// A basic operation for a basic stage
xBasicStageOperation( coolingTime, coolingTemperature, 1, eCookingStage_Done );
// There is nothing to do, in this iteration
break;
}
default : {
// Update state
cooking = false;
// Warn the user that the cooking is done
xWarnCookEnded();
}
}
}
// #################################################### Helpers ##################################################################
......@@ -1157,8 +1157,8 @@ void backToStatus() {
// #################################################### Set Variables ##################################################################
int getTimer(int init) {
// set operation state | INPUT : eRotaryEncoderMode newMode, int newPosition, int newMaxPosition, int newMinPosition, int newSingleStep, int newMultiStep
xSetupRotaryEncoder( eRotaryEncoderMode_Time, init, 7200, 0, 1, 30 );
// set operation state | INPUT : eRotaryEncoderMode newMode, int newPosition, int newMaxPosition, int newMinPosition, int newSingleStep, int newMultiStep
xSetupRotaryEncoder( eRotaryEncoderMode_Time, init, 7200, 0, 1, 30 );
// initialize variables
int rotaryEncoderPreviousPosition = 0;
......@@ -1174,19 +1174,19 @@ int getTimer(int init) {
while(true) {
// Check if pushbutton is pressed
if ((digitalRead(ROTARY_ENCODER_SW_PIN))) {
if ((digitalRead(ROTARY_ENCODER_SW_PIN))) {
// Wait until switch is released
while (digitalRead(ROTARY_ENCODER_SW_PIN)) {}
while (digitalRead(ROTARY_ENCODER_SW_PIN)) {}
// debounce
delay(10);
// debounce
delay(10);
// Job is done, break the circle
// Job is done, break the circle
break;
} else {
// Don't forget to keep an eye on the cooking
operateMachine();
}
// Don't forget to keep an eye on the cooking
operateMachine();
}
// display current timer
if (rotaryEncoderVirtualPosition != rotaryEncoderPreviousPosition) {
......@@ -1229,19 +1229,19 @@ int getTemperature(int init) {
while(true) {
// Check if pushbutton is pressed
if ((digitalRead(ROTARY_ENCODER_SW_PIN))) {
if ((digitalRead(ROTARY_ENCODER_SW_PIN))) {
// Wait until switch is released
while (digitalRead(ROTARY_ENCODER_SW_PIN)) {}
while (digitalRead(ROTARY_ENCODER_SW_PIN)) {}
// debounce
delay(10);
// debounce
delay(10);
// Job is done, break the circle
// Job is done, break the circle
break;
} else {
// Don't forget to keep an eye on the cooking
operateMachine();
}
// Don't forget to keep an eye on the cooking
operateMachine();
}
// display current timer
if (rotaryEncoderVirtualPosition != rotaryEncoderPreviousPosition) {
......@@ -1266,9 +1266,9 @@ int getTemperature(int init) {
return rotaryEncoderVirtualPosition;
}
int xSetGenericValue(int init, int min, int max, char *valueName, char *unit) {
// set operation state | INPUT : eRotaryEncoderMode newMode, int newPosition, int newMaxPosition, int newMinPosition, int newSingleStep, int newMultiStep
xSetupRotaryEncoder( eRotaryEncoderMode_Generic, init, max, min, 1, 5 );
int xSetGenericValue(int init, int min, int max, char *valueName, char *unit) {
// set operation state | INPUT : eRotaryEncoderMode newMode, int newPosition, int newMaxPosition, int newMinPosition, int newSingleStep, int newMultiStep
xSetupRotaryEncoder( eRotaryEncoderMode_Generic, init, max, min, 1, 5 );
// initialize variables
int rotaryEncoderPreviousPosition = 0;
......@@ -1280,7 +1280,7 @@ int xSetGenericValue(int init, int min, int max, char *valueName, char *unit) {
lcd.print( valueName );
lcd.setCursor ( 0 , LCD_VERTICAL_RESOLUTION - 1 );
lcd.print( " 0 " );
lcd.print( unit );
lcd.print( unit );
rotaryEncoderMaxPosition = TEMPERATURE_SETTING_MAX_VALUE;
......@@ -1288,17 +1288,17 @@ int xSetGenericValue(int init, int min, int max, char *valueName, char *unit) {
// Check if pushbutton is pressed
if ( digitalRead(ROTARY_ENCODER_SW_PIN) ) {
// Wait until switch is released
while ( digitalRead(ROTARY_ENCODER_SW_PIN) ) {}
while ( digitalRead(ROTARY_ENCODER_SW_PIN) ) {}
// debounce
delay( 10 );
// debounce
delay( 10 );
// Job is done, break the circle
// Job is done, break the circle
break;
} else {
// Don't forget to keep an eye on the cooking
operateMachine();
}
// Don't forget to keep an eye on the cooking
operateMachine();
}
// Check if there was an update by the rotary encoder
if( rotaryEncoderVirtualPosition != rotaryEncoderPreviousPosition ) {
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment